Understanding and connecting

Measures

Area and Perimeter
Designing Gardens

Element	g The learner	h The learner	i The learner	j The learner
Understanding and Connecting	Explores how to read a simple scale and use conventional measuring instruments.	Explores, estimates and then measures the perimeter and area of regular 2-D shapes.	Explores, estimates and measures the perimeter and area of regular and iregular 2-D shapes.	Uses knowledge of existing attributes to find the measure of unknown attributes.

National Council for Curriculum and Assessment (2022, p.37)

Grading	What learners can typically do			
Understanding and Connecting	The learner	h The learner	i The learner	j The learner
Use the grid to make drawings of gardens that have an area of $12 \mathrm{~m}^{2}$. How many different garden designs can you make that have an area of $12 \mathrm{~cm}^{2}$? If each garden has to have a fence around its perimeter, would the same amount of fencing be needed for each of them?	Uses a ruler to draw an enclosed 2-dimensional shape or shapes of $12 \mathrm{~cm}^{2}$ to represent a garden of $12 \mathrm{~m}^{2}$. Counts squares to check response. Counts each line segment of each square in turn.	Responds by drawing one or more rectangles. Skip counts rows or columns. Measures perimeter accurately using a ruler. Explores perimeters and notices differences and patterns.	Responds by drawing rectangles and compound shapes. Combines skip counting with other systematic methods for calculating the area. Notices differences and provides at least a partial rationale for relationship between area and perimeter.	As for learner i, but rationale articulates a convincing argument for how perimeter can vary when area stays constant (E.g.' if the garden is very long and thin - say $12 m$ in length and 1 m in width, that will be a larger area because that area is stretched out. A shorter, wider garden would have a smaller perimeter)

Design gardens that have at least one curved wall. What might the designs look like? The gardens have to be shrunk in area by a half. Draw the new designs. The shapes have to remain the same. Does the fencing for each also reduce by half?	Uses reasonable estimation to produce shapes with at least one curved side. Produces smaller figures, may not be accurately halved on all measures.	Produces shapes with one or more curved sides. Counts squares and uses estimation of partial squares to confirm area. Produces smaller figures, either consistently with halved area or perimeter measures.	Produces curved shapes using a compass and counts squares for area. May adjust circles created on the basis of observation of errors/ variances in initial attempts. Produces smaller figures, either consistently with halved area or perimeter measures. Describes the area/perimeter relationship between original and new shapes.	Analyses the relationship between diameter and circumference to make inferences about area, tested by counting squares. Produces figures of halved area consistently. Provides a rationale for the area/perimeter relationship between original and new shapes.

